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NOMENCLATURE 

Gr, Grashof number ; 
JmJ,,J,, Bessel functions of the first kind 

of order zero, one and two; 

;r , pressure; 
Prandtl number ; 

Q, heat dissipation rate; 
T, temperature; 
a, 0, fluid velocities in the flow and 

radial directions; 
x, r, flow and radial directions. 

Greek symbols 

%, characteristic values defined by 
J&Q = 4 a, z 0; 

fin? characteristic values defined by 
J&J = 0; 

5, independent variable, .x/t+ Gr. 

Subscript 

2, tube inlet. 

THE PURPOSE of this communication is to analyze the 
development of free convection in finite vertical tubes by an 
analytical method which is based upon a slug-flow lmeariz- 
ation of the governing boundary-layer type equations. The 
resulting equations are solved by means of Laplace trans- 
forms to give simple closed form expressions for the flow 
variables. The present results are also compared with avail- 
able numerical results found in the literature [ 1, 21. 

BASIC EQUATIONS 

The following basic assumptions are made to obtain the 
combined velocity and temperature fields and the heat- 
transfer characteristics of flow in a vertical circular tube 
maintained at a constant temperature higher than the 
ambient temperature: (1) The fluid enters the tube with 
ambient temperature and uniform velocity profile. (2) The 
viscous dissipation terms can be neglected. (3) The density 
varies only in the gravity force term (the Boussinesq assump- 
tion). (4) All other physical properties of the fluid are 
constant. 

Applying the usual boundary-layer assumption to the 
governing differential equations (contin~ty, momentum and 
energy) yields the following steady, incompressible, two- 
dimensional boundary-layer equations: 

au an y 
--&+a,+-'4 (1) I 

dp 
--, 

dx 
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and 

The wall boundary conditions are taken as zero velocity 
and prescribed temperature. At the center of the tube the 
usual symmetry conditions prevail. At the inlet of the tube the 
velocity and temperature are taken as constants. The initial 
velocity is not an inde~ndent parameter of the flow problem. 
If this initial velocity is termed ur then the initial pressure for 
natural convection flow is given by application of Bernoulli’s 
equation as pi = - uf/2 [3,4]. Finally, setting the pressure 
equal to zero at the tube exit gives the unknown initial 
velocity t+ This boundary condition also makes the stream- 
lines in the emerging flow parallel. 

An additional integral continuity equation is required 
because the r-momentum equation has been eliminated 
through the boundary layer assumptions, and it is given by 

1 
2 

f 
ur dr = ui. (4) 

0 

LINEARIZED SOLUTION OF EQUATIONS 

The governing equations (l)-(4) can not be solved 
analytically for pre-developed flow. Although a numerical 
solution is possible [ 1,2], to arrive at a tractable problem by 
analytical methods the momentum and energy convective 
terms will be linearized following anhlysis by Sparrow et al. 
[5] for the isothermal-entrance-region problem. The method 
is essentially a slug-flow linearization of the governing 
equations, i.e. 

a a a 
u-+v---Iui-. 
ax ar ax 

(5) 

With the introduction of a new independent variable 5 
= x/(u6 Gr) the linearized equations become 

and 

(6) 

(7) 

(8) 
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FIG. 1. Variation of inlet velocity ui with Gr for Pr = 0.7, 

The boundary conditions may now be written as: 

r = 0: p = 0, g = 0, 

r=l: u=o, T=l, (10) 
2 

5 = 0: u = ui, T=O, p+ (11) 

+A: p=o. (12) 

Equations (6)-(11) are now solved by a Laplace transform 
technique to yield simple closed form expressions for the flow 
variables T, u and p in terms of the initial velocity ui, i.e. 

(13) 

u(t,r) = 2ui 
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FIG. 2. Velocity and temperature profiles for Pr = 0.7 and 
Gr = 10’. 
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FIG. 3. Fluid pressure and heat absorbed Q vs tube length 
for Pr = 0.7 and Gr = 103. 

where the characteristic values a, are found from Jz(a& = 0, 
a, # 0 and the characteristic values /I. from Jo&) = 0. 

In order to complete the solution the parameter a, must be 
determined as a function of independent parameters, Pr and 
Gr. This is accomplished by first getting an implicit expression 
for ui from equation (15) by use of equation (12). Solving the 
resulting algebraic equation iteratively for u, and then 
substituting into equations (13) through (15) permits explicit 
solutions for T, u and p. 
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The heat absorbed by the fluid rising in the tube can be 
written as 

It must be noted, however, that the use of boundary layer 
type of equations in the analysis is limited to cases where Gr is 

Q=2 s I not too large. Otherwise, the velocity profiles will indicate a 
uTr dr. (16) downward flow at the center of the tube exit, and boundary- 

0 layer-type equations used would not be valid for this flow 
behavior. Finally, the Oseen type of linearization of the 
governing equations should only relate to physical cases 

RESULTS AND DISCUSSION where the length to diameter ratios of tubes considered are 

In order to justify the validity of the present linearized moderately large. 
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NOMENCLATURE 

plate thickness; 
local Brun number defined by equation (1); 
thermal conductivity; 
Prandtl number; 
local heat flux; 
transformed heat flux defined by equation (14); 
local Reynolds number ; 
temperature; 
longitudinal and transverse components of 
velocity in boundary layer; 
Cartesian coordinates; 
transformed coordinate defined by 
equation (18); 
transformed coordinate defined by 
equation (10); 

Greek symbols 

x, thermal diffusivity; 
parameter defined by equation (17); 
boundary-layer thickness; 
transformed distance defined by equation (9); 
shear stress; 
absolute viscosity; 
kinematic viscosity; 
dimensionless temperature defined by 
equation (6); 
dimensionless temperature, Q, = 1 - 0. 

Subscripts 

refers to wall surface in contact with fluid; 
refers to wall surface at constant temperature; 
refers to fluid; 
refers to solid; 
refers to thermal boundary layer; 
refers to local values; 
refers to mainstream flow; 
refers to values of Nu, at Br, = 0. 

tNTEODUCTION 
IN THE usual formulation of the problem of heat transfer to 
flow over a flat plate, boundary conditions are specified at the 
upper surface of the plate which is in contact with the fluid. If, 
however, the boundary conditions are specified over the 
lower surface of the plate, the effect of plate resistance, if 
signigicant, must be included in the analysis resulting in a 
conjugate heat-transfer problem. This represents a more 
realistic approach and analyses of this type have recently 
received increased attention resulting in publication of a 
number of papers [ 11. A formulation of such problems was 
originally presented by Luikov [Z] and analytical methods of 
solution of certain conjugate problems were given by Luikov, 
Aleksashenko and Aleksashenko [3]. More recently Luikov 
[4] presented a solution of the problem of heat transfer to 
laminar flow over a plate of finite thickness with the lower 
surface of the plate maintained at a uniform constant 


